Skip to Main Content
The online publications platform for American Nuclear Society members.
315
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers – Special section on the Seismic Analysis and Risk Assessment of Nuclear Facilities

Effect of Soil Properties and Input Motion on Site Amplification Using Validated Nonlinear Soil Model

ORCID Icon, ORCID Icon, , &
Pages 1639-1663 | Received 21 Aug 2020, Accepted 16 Apr 2021, Published online: 23 Aug 2021
 

Abstract

Three-dimensional (3-D) nonlinear site response analyses are conducted using finite element models of actual soil profiles from ten nuclear power plant (NPP) sites in the United States to investigate the effects of soil properties and input motions on site amplification. The modeling approach developed in this study combines several novel elements, such as 3-D analysis (including vertical motions), nonlinear inelastic behavior of soil (strain-dependent shear modulus reduction and hysteretic damping), formulation of nonreflecting boundary conditions at the base, and generation of realistic outcrop ground motions for specific sites. All these elements of the modeling approach are first validated using actual data from five earthquakes at three downhole array stations recorded in the Kiban-Kyoshin network (KiK-net), Japan. The same approach is then used to develop site models of ten NPP sites in the United States and corresponding ground motions that are spectrally matched to the site hazard spectra. Eight sets of three-component input motions are used in the study and are categorized on the basis of presence or absence of a near-field pulse in the seed ground motions used for spectral matching. It is found that all sites retain a definite site amplification function regardless of the input motion, provided that the seed motion is spectrally matched to the site hazard spectra. The magnitude of site amplification and frequencies at which they occur depend upon soil properties, particularly the shear wave velocity profile and the constitutive relationship (strain-dependent shear modulus reduction and hysteretic damping) of soil. Amplification of spectral acceleration in the vertical direction (up-down motion) is found to be just as much as, if not more than, the amplification in the horizontal direction. Peak shear strain is found to be about 20% larger for near-field motions compared to far-field motions whereas maximum horizontal site amplification for far-field motions is found to be consistently larger than that of near-field motions, even though the differences between the two remain within the scatter resulting from individual ground motions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.