Skip to Main Content
The online publications platform for American Nuclear Society members.
124
Views
2
CrossRef citations to date
0
Altmetric
Technical Note

Model Validation for Quantitative X-Ray Measurements

, , , , &
Pages 167-176 | Received 19 Jul 2017, Accepted 26 Oct 2017, Published online: 21 Feb 2018
 

Abstract

Soft–X-ray (SXR) brightness measurements contain information on a number of physics parameters in fusion plasmas; however, it is nearly impossible to extract the information without modeling. A validated forward model is therefore necessary for the accurate interpretation of SXR measurements and will be critical in the burning plasma era, where medium- and high-Z impurities are ever present. The Atomic Data and Analysis Structure (ADAS) database is a powerful interpretive tool that is extensively used to model and predict atomic spectra, level populations, and ionization balance for fusion plasmas. These predictions are in good agreement with experimental measurements. However, continuum radiation in the X-ray range, while also modeled in ADAS, has not been rigorously verified or tested against experimental data. We therefore performed a systematic comparison of ADAS to a simplified model called PFM. PFM only calculates continuum radiation but shows good agreement with experimental data when only continuum radiation is present. ADAS and the simplified model agree to within 1% to 2% indicating that ADAS is calculating continuum radiation correctly. We have also begun a validation of SXR brightness calculations from ADAS. The SXR brightness measurements modeled by ADAS agree well with experimental measurements from an extreme where the signal is dominated by line radiation continuously through another extreme where the signal is dominated by continuum emission. While this validation work is preliminary, it strongly suggests that ADAS accurately models the physics that lead to SXR radiation.

Acknowledgment

This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences program under grants DE-FC02-05ER54814 and DE-SC0015474.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.